
Journal of Global Optimization 25: 243–261, 2003.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

243

Computation of the Reverse Shortest-Path Problem

JIANZHONG ZHANG1 and YIXUN LIN2

1Department of Mathematics, City University of Hong Kong, Hong Kong; 2Department of
Mathematics, Zhengzhou University, Zhengzhou, China

Abstract. The shortest-path problem in a network is to find shortest paths between some specified
sources and terminals when the lengths of edges are given. This paper studies a reverse problem: how
to shorten the lengths of edges with as less cost as possible such that the distances between specified
sources and terminals are reduced to the required bounds. This can be regarded as a routing speed-
up model in transportation networks. In this paper, for the general problem, the NP-completeness is
shown, and for the case of trees and the case of single source-terminal, polynomial-time algorithms
are presented.

1. Introduction

The shortest-path problem plays an important role in combinatorial optimization
because of its fundamental characteristic and wide range of applications. In fact,
the model of seeking shortest paths has been proposed from various fields such
as transportation, communication, computer networks and manufacturing systems.
This problem has been extensively studied in both theoretic and algorithmic aspects
(see [1, 8–13]).

Recently, several inverse versions of combinatorial optimization problems, in-
cluding the inverse shortest path problem, have received much attention, due to
practical motivations [2–7, 14–17].

There may be two types of inverse problems as follows:
1. Given a feasible solution x, adjust the parameters with as less cost as possible

so that x becomes an optimal solution (with respect to the new parameters).
2. For a given min-problem and a given value v, adjust the parameters with as

less cost as possible so that v becomes the optimal value, or an upper bound of
the optimal value, for the problem.

The first one has been called “inverse” in the literature [3–6, 14, 15]. To make
distinction from the first type, the authors of [16, 17] suggested the term “reverse”
for the second type.

With regard to the shortest-path problem, the reverse version has a significant
background as follows. In a transportation or communication network, the weight
of a link may represent the transit time from one end to the other. So, the weight of
a path is the traveling time from the source to the terminal. In order to improve the
transmission efficiency of the network, one may want to speed up some routes,
i.e., to reduce traveling times between some pairs of sources and terminals by

244 J. ZHANG AND Y. LIN

decreasing weights of links. It is natural that reducing traveling time in a link (e.g.,
improving the conditions of the road to make vehicles run faster) needs some cost.
We hope that the total cost is as less as possible to meet the requirement of speed-
up. We call this a speed-up model. It is interesting that a slow-down model has
been studied in [9] as follows: from an opponent’s point of view, try to increase
the lengths with a given budget so that the shortest path from a source to a sink is
made as long as possible. However, the problem of speed-up is quite different from
that of slow-down. Other relevant topics appeared in the literature are those about
network improvement. For example, see [2] for the median location problem, see
[16, 17] for the center location problem and [7] for the spanning tree problem.

Let us now state the problem formally. We are given a network N = (V ,E, l,

α, c) where (V,E) is a directed graph with vertex set V = {1, 2, . . . , n} and edge
set E ⊆ V ×V, |E| = m, and l, α, c are functions from E to R

+ with the following
definitions: for e = (i, j) ∈ E,

lij = l(e) is the current length of e,

αij = α(e) is the least possible length of e,

cij = c(e) is the cost of reducing the length of e by one unit.

Moreover, k pairs of vertices (si, ti) and upper bounds di (i = 1, 2, · · · , k) are
specified with the request that the length of the shortest path from si to ti is not
more than di . For each pair (si, ti), si is called a source and ti a terminal. We will
denote by dl(si , ti) the distance, i.e., the length of the shortest path, from si to ti
under the length function l.

The reverse shortest-path problem (RSP) is to find a new length function x :
E → R

+ so as to

minimize
∑

(i,j)∈E
cij (lij − xij) (1.1)

subject to

dx(si, ti) � di, i = 1, 2, · · · , k (1.2)

αij � xij � lij , ∀(i, j) ∈ E. (1.3)

In this model, we use a linear objective function (1.1) (i.e., a weighted l1-norm)
to represent the cost for meeting the requests (1.2) and (1.3). However, in some
previous work on the inverse shortest-path problem [3–5], quadratic programming
models were proposed by considering the l2-norm of the error:

minimize
∑

(i,j)∈E
(lij − xij)

2 (1.4)

COMPUTATION OF THE REVERSE SHORTEST-PATH PROBLEM 245

with a purpose of checking the priori expected lengths {lij } and getting more ac-
curate estimates of the lengths. With the same purpose one may use the l1-norm to
simplify the formulation (see [14, 15]):

minimize
∑

(i,j)∈E
|lij − xij |, (1.5)

which is a special case of (1.1). As to the constraint (1.2), there are several cases to
consider:
(a) multiple sources and multiple terminals: k pairs (si, ti), i = 1, · · · , k, are given
and k � 2;
(b) single source: si = s(i = 1, 2, · · · , k);
(c) single terminal: ti = t (i = 1, 2, · · · , k);
(d) single source and single terminal: k = 1.

We will show that cases (a)–(c) are strongly NP-hard no matter which object-
ive function of (1.1), (1.4) or (1.5) is taken into account. On the other hand, a
polynomial algorithm is proposed for case (d) under the weighted l1-norm.

So, the main topic of the paper is the computational aspects of the RSP. The
paper is organized as follows. In Section 2, we show the NP-completeness of
the general model by transforming the three-dimensional matching problem into
the model. Section 3 focuses on a dynamic programming algorithm for the case
of single source and single terminal. A combinatorial algorithm is presented in
Section 4 for the case of trees with a single source. Some concluding remarks are
given in Section 5.

2. Results on Computational Complexity

Regarding the computational complexity of an optimization problem, we always
discuss its decision version. The decision version of RSP is : for a given budget
(threshold) b, is there a function x : E → R

+ satisfying (1.2), (1.3) and

c(x) =
∑

(i,j)∈E
cij (lij − xij) � b? (2.1)

As usual, to prove that a decision problem A is NP-complete, we need to show
two things:
1. A is in the class NP;
2. An NP-complete problem B can be transformed to A in polynomial time.

And A is said to be strongly NP-complete if we can further show that
3. A is still NP-complete even if the largest number appearing in the instances of

A is bounded above by a polynomial (of the size of the instance).
We now proceed to study our RSP problem. To show its NP-completeness, we

choose a well-known (strongly) NP-complete problem – three-dimensional match-
ing (3DM), which is regarded as one of the six basic NP-complete problems in

246 J. ZHANG AND Y. LIN

[10]. That is, given three disjoint sets U,V,W with |U | = |V | = |W | = K and
a subset Q of U × V × W , is there a subset M of Q with |M| = K such that
whenever (u, v,w) and (u′, v′, w′) are distinct triples in M,u �= u′, v �= v′, and
w �= w′? Here, such M is called a perfect matching (if it exists).

THEOREM 1. The decision version of RSP is strongly NP-complete even if all
parameters l(e), α(e), c(e) and di are 0 or 1.

Proof. We will show the three things just mentioned. First, it is well-known that
there are polynomial-time algorithms for the original shortest path problem (see,
e.g., [11–13]). So, for a given length function x, checking condition (1.2), as well
as (1.3) and (2.1), can be completed in a polynomial time. Therefore, the problem
is in the class NP.

Second, given an instance of 3DM: (U, V,W ;Q), we may construct an instance
of RSP, i.e., a network N , as follows:

(a) The vertex set of N is U ∪ V ∪ W ∪ Q ∪ {s}, where the new vertex s is a
source and all vertices in U,V,W are terminals.

(b) For every triple q = (u, v,w) ∈ Q, we join edges (q, u), (q, v), (q,w)
where u ∈ U, v ∈ V, w ∈ W ; also we join (s, q) for all q ∈ Q.

(c) For edges e = (q, u), (q, v) or (q,w), let l(e) = α(e) = 0, c(e) = 1; for
edges e = (s, q), let l(e) = c(e) = 1, α(e) = 0. Moreover, for all pairs of
sources and terminals (s, u), (s, v) and (s, w), let the requested upper bound
for these distances be di = 0 and let the threshold b = K.

An illustration of network N is shown in Figure 1. It is clear that the construc-
tion of this network N can be done in polynomial time. We only need to show the
following claim: The instance of 3DM has a perfect matching M if and only if the
instance of RSP (with respect to network N) has a feasible solution x such that
c(x) � K.
In fact, if there is a perfect matching M ⊆ Q, we may let

x(e) =
{

1, if e = (s, q), q /∈ M

0, otherwise.

Since K vertices of M are adjacent to all 3K vertices of U ∪ V ∪ W , it follows
that the source s can reach all terminals by paths of length 0. Hence x is a feasible
solution of network N with cost c(x) = |M| = K.

Conversely, let x be a feasible solution of N with c(x) � K. By condition (1.2)
and the request that all di = 0, we can see that the source s and each terminal in
U ∪ V ∪ W have to be connected by a path of length 0. So, there must be some
edges e = (s, q) having x(e) = 0. Let M = {q ∈ Q|x(e) = 0 and e = (s, q)}.
Then the vertices of M can reach 3K vertices of U ∪ V ∪ W . Thus, |M| � K.
Since c(x) � K, we have |M| = K and hence M is a perfect matching.

COMPUTATION OF THE REVERSE SHORTEST-PATH PROBLEM 247

Figure 1.

To sum up, we have shown that the decision version of RSP is NP-complete.
Furthermore, since 3DM is strongly NP-complete and in the construction of the
instance of RSP all input data are 0 and 1, it follows that RSP is strongly NP-
complete. This completes the proof. �
Note that the above proof is also valid for the objective function (1.4) studied in
[3–5], as well as (1.5). Hence we obtain a further conclusion as follows.

COROLLARY 1. The decision versions of RSP with l2-norm, l1-norm, and weigh-
ted l1-norm are all strongly NP-complete even for the case of single source.

For an NP-complete problem, it is unlikely that there would be a polynomial-
time algorithm to solve the problem. The following two aspects are worthwhile
to further study:
(1) practical (heuristic or approximation) algorithms;
(2) special cases which are polynomially solvable.
For example, we have a result concerning the second aspect.

THEOREM 2. When the paths from si to ti (i = 1, . . . , k) are specified, the RSP
can be solved in polynomial time.

248 J. ZHANG AND Y. LIN

Proof. Let the path from si to ti be denoted by Pi(i = 1, 2, · · · , k), and let
E = {e1, e2, · · · , em}. We may define a k × m matrix A = (aij), as the path-edge
incident matrix, by

aij =
{

1, if edge ej is in path Pi
0, otherwise.

Also, we represent the functions l, α, c, x by vectors l = (l1, l2, · · · , lm)T , α =
(α1, α2, · · · , αm)T , c = (c1, c2, · · · , cm)T , x = (x1, x2, · · · , xm)T where lj =
l(ej), αj = α(ej), cj = c(ej), and xj = x(ej). Let d = (d1, d2, · · · , dk)T . Then
the RSP is a linear programming :


min cT (l − x)

s.t. Ax � d,

α � x � l.

(2.2)

It is well-known that there are polynomial-time algorithms for solving linear pro-
gramming problems [12]. So, the theorem follows. �

This special case often appears in practical applications. In the routing speed-
up model of transportation networks, the shortened routes are sometimes given in
advance. Also, for some networks with special structures, the shortest paths Pi are
uniquely determined, for instance, when N is a tree or a one-way network (i.e.,
there is at most one path between two vertices).

3. Polynomial Solvability for the Single Source and Single Terminal Case

In this section we investigate the RSP (1.1)–(1.3) with a single source and a single
terminal, i.e., the case of k = 1. Our goal is to show that this case is polynomially
solvable. For the vertex set V = {1, 2, . . . , n} assume that the source s1 = 1, the
terminal t1 = n and d1 = d. For any non-negative scalar x, let

aij (x) = the cost for shortening edge (i, j) from lij down to x (x ∈ R1)

=



0, if x � lij ,

cij (lij − x), if αij � x � lij ,

∞, if x < αij .

This is a piecewise linear and non-increasing function. We make a convention that
aij (x) = lij = ∞ whenever (i, j) /∈ E.

In order to establish a dynamic programming algorithm, we define the optimal-
ity function as fj (y) = the minimum shortening cost such that the distance from 1
to j is at most y. Then, fn(d) is the optimal value of our problem. By the Principle
of Optimality, we obtain the DP recursive equation:

fj (y) = min
k �=j

min
0�x�y

{fk(y − x)+ akj (x)} (3.1)

COMPUTATION OF THE REVERSE SHORTEST-PATH PROBLEM 249

with the initial condition

f1(y) = 0 for all y � 0. (3.2)

Our task is to find the solution of this equation. To avoid complicated notations and
to concentrate our attention on the structure of solutions, we start with the case that
network N is acyclic. Recall that a directed graph is acyclic if and only if there
exists a numbering of its vertices such that (i, j) ∈ E ⇒ i < j [11, 12]. So, we
may assume that the vertex set V = {1, 2, . . . , n} has been arranged according to
this numbering. For a vertex j , j � 2, denote its precedence set by

N−(j) = {k ∈ V |(k, j) ∈ E}.
Then, (3.1) can be written as

fj (y) = min
k ∈N−(j)

min
0�x�y

{fk(y − x)+ akj (x)}. (3.1)′

We can calculate the functions f1(y), f2(y), . . . , fn(y) one by one by this recursive
equation. As we know, in the algorithms of the ordinary shortest path problem there
is a label, say Lj , associated with each vertex j . And now, for the reverse problem
we have to compute a function fj(y) for each vertex j , which makes the algorithm
much more complicated. However, the following property can help us ease the
difficulty.

LEMMA 1. The functions fj(y), given by (3.1)′, are piecewise linear and non-
increasing.

Proof. We prove this lemma by induction on j . It is obvious for j = 1 by noting
(3.2). Assume that the result holds for 1, 2, . . . , j − 1 and consider fj (y). For a
given k, we observe the optimization problem

sk(y) = min
0�x�y

{fk(y − x)+ akj (x)}, (3.3)

where, by the inductive hypothesis, fk(y − x) and akj (x) (k < j) are piecewise
linear and non-increasing. Without loss of generality, suppose that they are (as
shown in Figure 2):

akj (x) =



0, if x � l0,

c0(l0 − x), if α0 � x � l0,

∞, if x < α0,

fk(y) =




0, if y � l1,

c1(l1 − y), if l2 � y � l1,

c1(l1 − l2)+ c2(l2 − y), if l3 � y � l2,

· · ·
p−1∑
i=1

ci(li − li+1)+ cp(lp − y), if lp+1 � y � lp,

∞, if y < lp+1.

250 J. ZHANG AND Y. LIN

Figure 2.

A solution x of problem (3.3) is said to be basic if x = l0 or α0, or y − x =
li(1 � i � p + 1). We have the following

Claim: For any given y, there is an optimal solution of (3.3) which is basic.
In fact, let x∗ be an optimal solution of (3.3) satisfying

α0 < x∗ < l0, li+1 < y − x∗ < li.

Then

fk(y − x∗)+ akj (x
∗) =

i−1∑
t=1

ct (lt − lt+1)+ ci(li − y + x∗)+ c0(l0 − x∗).

Assume that c0 � ci (the case of c0 � ci is symmetric). Let

�x = min{l0 − x∗, y − x∗ − li+1}.
Then

fk(y − x∗ − �x)+ akj (x
∗ + �x) − fk(y − x∗)− akj (x

∗)
= ci�x − c0�x � 0.

So, x∗ + �x is also optimal and it is a basic solution because of the choice of �x.
Thus we confirmed the claim.

By virtue of the claim, we can deduce that the optimal value of (3.3) is

sk(y) = min{fk(y − α0)+ akj (α0), fk(y − l0)+ akj (l0), fk(l1)+ akj (y − l1),

fk(l2)+ akj (y − l2), . . . , fk(lp+1)+ akj (y − lp+1)}.
Here, all functions on the right-hand side are piecewise linear and non-increasing,
and so is the minimum function sk(y). By the same reason, the minimum function

fj (y) = min
k ∈N−(j)

sk(y), (j � 2)

COMPUTATION OF THE REVERSE SHORTEST-PATH PROBLEM 251

is also piecewise linear and non-increasing. This completes the proof. �
Now that each function fj (y) is piecewise linear, and hence it can be represented
by a finite sequence whose terms indicate the intervals and coefficients of the linear
pieces of fj (y). For example, the function fk(y) in the proof of Lemma 1 can be
represented by a sequence (0, l1; c1, l2; c2, l3; · · · ; cp, lp+1). In the implementation
of our algorithm, a compact data structure for the storage of these piecewise linear
functions is needed. Otherwise the algorithm may not complete computation in
polynomial time.

The main subroutine in our algorithm is to find the minimum function of several
piecewise linear functions. This can be reduced to finding the minimum of several
linear functions on each of the subintervals. For doing this, we present a naive
method here. For instance, one wants to find

ϕ(y) = min{bi − ciy | i = 1, 2, . . . , q}, (0 � y � r).

Assume that

b1 � b2 � · · · � bq and ci > ci+1 if bi = bi+1,

and ci � 0.
Procedure ML:
Step 0 Let i1 = 1, t = 1.
Step 1 Take

rt = min

{
bj − bit

cj − cit

∣∣ j > it , cj > cit

}

(note that rt = ∞ if the set in the above expression is ∅). If rt � r, go to Step 3;
otherwise denote by it+1 the index j that attains the minimum rt (when there is a
tie, take the largest j).

Step 2 Let t := t + 1, return to Step 1.
Step 3 Write down the solution

ϕ(y) =



bi1 − ci1y, if 0 � y � r1,

bi2 − ci2y, if r1 � y � r2,

. . .

bit − cit y, if rt−1 � y � rt .

The complexity of this procedure is O(q log q). In fact, it runs at most O(q)
steps. However, the complexity for sorting all coefficients bi is O(q log q).

The computation of (3.1)′ includes two procedures as follows.
Procedure I: Computation of sk(y) in (3.3).
Suppose that fk(y) and akj (x) are the two functions given in the proof of

Lemma 1. Due to the claim there, the optimal value sk(y) can be attained at some

252 J. ZHANG AND Y. LIN

basic solutions x. When the optimal basic solution is

x =


l0, if y � l0 + li ,

y − li , if α0 + li � y � l0 + li ,

α0, if α0 + lp+1 � y � α0 + li ,

the optimal value of (3.3) will be

hi(y) =



fk(y − l0), if y � l0 + li,

fk(li)+ c0(l0 + li − y), if α0 + li � y � l0 + li ,

fk(y − α0)+ c0(l0 − α0), if α0 + lp+1 � y � α0 + li ,

∞, if y < α0 + lp+1,

(3.4)

where 1 � i � p + 1. Then

sk(y) = min
1�i�p+1

hi(y). (3.5)

This can be calculated by using Procedure ML.
Procedure II: Computation of fj (y) = min

k ∈N−(j)
sk(y).

We have obtained several piecewise linear functions sk(y) by Procedure I (for
a given vertex j). Now, we proceed to calculate the minimum of them by using
Procedure ML.

In order to keep track of the shortest paths and the shortening scheme, we must
store the optimal solution of (3.3) in Procedure I by

xkj (y) = the length of edge (k, j) if the distance from 1 to j is at most y,

and store the index k that attains the minimum of sk(y) in Procedure II by

pj (y) = the previous vertex of j in the shortest path from 1 to j if its length

is at most y.

The algorithm can be summarized as follows.
DP Algorithm
Step 1 Let f1(y) = 0 for all y.
Step 2 For j = 2, 3, . . . , n carry out the following computations.

(2a) For each k ∈ N−(j) compute

sk(y) = min
0�x�y

{fk(y − x)+ akj (x)}

by Procedure I and record the optimal solution x as xkj (y).
(2b) Compute

fj (y) = min
k ∈N−(j)

sk(y)

by Procedure II and save the optimal index k as pj(y).

COMPUTATION OF THE REVERSE SHORTEST-PATH PROBLEM 253

Step 3 Search for the shortest path as follows. Suppose thatw = pn(d). Thenw
is the previous vertex of the terminal n (in a shortest path with length d). And x∗

wn =
xwn(d) is the required length of edge (w, n). Next, suppose that v = pw(d − x∗

wn).
Then v is the previous vertex of w with x∗

vw = xvw(d − x∗
wn) as the adjusted length

of edge (v,w). Continueing in this way, we will eventually get 1 = pi(d − x∗
wn −

· · · − x∗
ij) and x∗

1i = x1i (d − x∗
wn − · · · − x∗

ij). So, the shortest path from 1 to n is
(1, i, j, . . . , v,w, n) with length x∗

1i +x∗
ij +· · ·+x∗

vw +x∗
wn = d and the minimum

cost fn(d).

LEMMA 2. The above algorithm correctly solves the recursive equation (3.1)′ in
polynomial time.

Proof. By Lemma 1, the functions fj (y) are piecewise linear. Let us estimate
the number of linear pieces (sections) of fj (y). There are two cases to consider:

Case 1 If the shortest path from 1 to j does not change when y varies, then the
optimal shortening scheme can be obtained by shortening edges in the path one by
one in a greedy way (the edge with the cheapest cost is shortened first). So, fj (y)
is a convex piecewise linear function, and each piece corresponds to an edge of the
path. Thus, the number of pieces of fj (y) is not more than n.

Case 2 When y decreases from dl(1, j) to the lower bound, the shortest paths
from 1 to j are in turn P1, P2, . . . , Ps . For each fixed path Pi , let h(i)(y) be the
minimum shortening cost such that its length is at most y. By the argument of Case
1, h(i)(y) is convex and has at most n pieces. It is clear by definition that

fj (y) = min
1�i�s

h(i)(y).

Also, fj (y) is composed of a part of h(1)(y), and then a part of h(2)(y), until a part
of h(s)(y) (as shown in Figure 3). From this structure of fj (y), it follows that each
path Pi(i > 1) has at least a new edge which has fewer shortening cost and does
not appear in the previous paths. Therefore s � m. Thus the number of pieces of
fj (y) is not more than mn.

To sum up, fj (y) has at most mn pieces for all j .
In the computation of (3.1)′, let p be the number of pieces of fk(y), where

p � mn. Then in Procedure I there are at most p basic solutions to be considered,
and for each basic solution the number of pieces of function hi(y) in (3.4) is O(p).
So, in solving (3.5) there are O(p2) subintervals in which Procedure ML is carried
out. As stated before, the complexity of Procedure ML is O(p logp). Hence the
complexity of Procedure I is O(p3 logp). As to Procedure II, there are at most n
functions sk(y) each of which has O(p2) pieces. So, there are O(np2) subintervals
for executing Procedure ML (finding the minimum of at most n linear functions).
Thus the complexity of Procedure II is O(n2p2 log n). In summary, the overall
complexity of the algorithm is a polynomial of m and n. �

So far we considered the case that network N is acyclic and the recursive equa-
tion is (3.1)′. For a general directed network N we should solve equation (3.1)

254 J. ZHANG AND Y. LIN

Figure 3.

with initial condition (3.2). Similar to the Bellman-Ford method for the shortest
path problem [8, 11], we may apply a successive approximation in terms of the
following functions: f (r)j (y) = the minimum shortening cost such that the distance
from 1 to j is at most y, subject to the condition that the shortest path from 1 to j
contains no more than r edges.

Then

f
(1)
j (y) =

{
0, if j = 1,
a1j (y), if j �= 1,

(3.6)

and

f
(r+1)
j (y) = min{f (r)j (y),min

k �=j
min

0�x�y
{f (r)k (y − x)+ akj (x)}}. (3.7)

Since each of the shortest paths has no more than n − 1 edges, the successive
process will terminate at the (n − 1)th approximation. Namely, f (n−1)

j (y) is the
solution fj (y) of (3.1).

The approximation will start with the functions f (1)j (y) given by (3.6). Suppose

then that f (r)
j (y) have been obtained for r � 1. In order to compute f (r+1)

j (y) in
(3.7), we have two procedures as before. In Procedure I, similar to (3.3), we may
compute

sk(y) = min
0�x�y

{f (r)k (y − x)+ akj (x)};

In Procedure II, we get

f
(r+1)
j (y) = min{f (r)j (y),min

k �=j sk(y)}.

COMPUTATION OF THE REVERSE SHORTEST-PATH PROBLEM 255

These two procedures comprise the approximation of stage r. By comparing the
corresponding recursive equations, it is not difficult to see that a stage of approx-
imation is almost the same as the DP algorithm for acyclic networks. Therefore,
the complexity of the approximation algorithm for solving (3.1) is n times of the
complexity of the algorithm for solving (3.1)′. So, we have the following result.

THEOREM 3. The RSP problem with a single source and a single terminal can
be solved in polynomial time.

4. A Combinatorial Algorithm for Tree Network with Single Source

We have formulated the RSP for tree networks as a linear program (2.2) in Section
2, which can be rewritten as


min cT y

s.t. Ay � b,

0 � y � u,

(4.1)

where y = l−x = (y1, y2, . . . , ym)
T with yj standing for the part of length lj being

shortened; b = Al− d = (b1, b2, . . . , bk)
T with bi = dl(si, ti)− di > 0 represent-

ing the required reduction of the length of Pi; and u = l − α = (u1, u2, . . . , um)
T

with uj � 0 as the largest possible shortening of edge ej . Recall that A = (aij) is
the k×m path-edge incident matrix. We denote by aTi the i-th row of A. Note that
the existing polynomial algorithms for general LP are not polynomial in the strong
sense. In this section, based on the structure of tree networks, we present a strongly
polynomial algorithm for the case of single source (s = si).

The following algorithm starts with an infeasible solution y = 0, which is
nothing but a scheme with no edges being shortened. At stage r, let Br denote
the set of paths not reaching the required reduction. In order to further reduce these
paths in Br , we should choose a set of edges with the cheapest shortening cost to
form an improving direction vector z. We then reduce the lengths of edges along
this direction z until either the length of an edge reaches its lower bound or a path
attains its required reduction. These two cases determine the step-length θ of the
iteration. In this way we get a new solution y+θz. The iteration is carried on until a
feasible solution y is found, which is also optimal. This algorithm is rather similar
to the steepest descent method.

Combinatorial Algorithm
Step 0 Let y0 = 0 and r = 0.
Step 1 If yr is feasible for (4.1), stop (it is optimal); otherwise let

Br := {i | bi − aTi y
r > 0},

cj := ∞, if yrj = uj .

256 J. ZHANG AND Y. LIN

Step 2 Find a moving direction z ∈ Rm by solving the subproblem


min cT z

s.t. aTi z � 1, for i ∈ Br,

0 � zj � 1, for j = 1, 2, . . . , m
(4.2)

(it will be shown that this z can be a (0, 1)-vector).
Step 3 Let yr+1 = yr + θz where θ = min{θ1, θ2} and

θ1 = min{uj − yrj | zj = 1} > 0,

θ2 = min{bi − aTi y
r

aTi z
| i ∈ Br} > 0.

Set r := r + 1 and return to Step 1.
The core of this iterative algorithm is subproblem (4.2), which has a precise

interpretation as follows. Note first that the conditions zj � 1 in (4.2) for all j are
redundant since they must be satisfied by any optimal solution (if some zj > 1, we
would get a better solution by setting zj = 1).

LEMMA 3. Problem (4.2) has integer optimal solutions.
Proof. It suffices to show that matrix A is totally unimodular, i.e., every subde-

terminant of A is either 0 or ±1 (see [11,12]). Let A′ be an r × r submatrix of A
with r rows corresponding to paths Pi1 , Pi2 , · · · , Pir and r columns corresponding
to a set E′ of edges. We are going to show that det (A′) = 0 or ±1 by induction
on r. It is obvious for r = 1. Suppose it holds for r < h and consider the case
of r = h. Let e∗ be an edge in E′ which has the maximal distance from source
s. If e∗ does not belong to any of Pi1 , Pi2 , · · · , Pir , the e∗-column of A′ is a zero
vector, and thus det (A′) = 0. If e∗ belongs to at least two of them, there will be
two rows of A′ being the same, thus det (A′) = 0. So, we only need to consider the
case that e∗ belongs to a unique path, say Pi1 (there is only one 1 in the e∗-column).
By using the inductive hypothesis to the matrix A′′ obtained by deleting e∗-column
and Pi1 -row from A′, the conclusion follows. �

A subset W ⊆ E is called a cut with respect to Br if it meets all paths Pi
for i ∈ Br , i.e., W

⋂
Pi �= ∅ (∀i ∈ Br). The capacity of cut W is defined by

C(W) = ∑
ei∈W ci , where the cost ci for shortening per unit of length is regarded

as the capacity of edge ei . A minimum cut is a cut with the minimum capacity.

LEMMA 4. The incident vector z of a minimum cut W is an optimal solution of
subproblem (4.2).

Proof. For a cut W , its incident vector z is defined by

zj =
{

1, if ej ∈ W ,
0, otherwise.

COMPUTATION OF THE REVERSE SHORTEST-PATH PROBLEM 257

W
⋂
Pi �= ∅ (∀i ∈ Br) means that aTi z � 1 for all i ∈ Br . Then z is a feasible

solution of (4.2) with the same cost as the capacity of W . On the other hand, for
an integer optimal solution z∗ of (4.2) (the existence has been claimed in Lemma
4.1), we have z∗

j ∈ {0, 1} (j = 1, 2, · · · ,m). Thus W ∗ = {ei ∈ E | z∗
j = 1} is a cut

with respect to Br . It is clear that the capacity of W ∗ is the same as the cost of z∗.
So, W ∗ is a minimum cut. This completes the proof. �
From the above lemma we see that linear program (4.2) is essentially a pure com-
binatorial problem of finding minimum cuts, which can be solved by the max-flow
algorithms. Since network N is a tree with single source s, the max-flow algorithm
will be very simple. First, we may consider the network as a rooted tree T in which
the root is source s and all leaves are terminals ti (i ∈ Br). In fact, if there are some
leaves other than ti , then they can be deleted from T ; if a terminal ti is not a leaf,
then all its descendants can be deleted from T . Doing these has no effect on the
max-flow and min-cut. Then, to this rooted tree T with source s, sinks ti (i ∈ Br)
and edge capacity c, we produce a recursive procedure for finding max-flow as
follows. Suppose that all edges leading from s are e1 = (s, v1), . . . , el = (s, vl).
We denote by T (vj) the subtree of T rooted at vj (i.e. the subtree constituting the
branch out of ej). Let v(T) represent the value of a maximum flow in T . Then it
follows that

v(T) =
l∑

j=1

min{c(ej), v(T (vj))}.

The procedure can be started at the sinks ti with initial conditions v({ti}) = ∞, and
executed recursively until the source is reached. After a maximum flow is found,
a minimum cut can be obtained by taking the first saturated edge in each path Pi
(i ∈ Br). It is clear that this procedure runs inO(n) time. Therefore, the complexity
of Step 2 of our algorithm is O(n).

It remains to prove the correctness of the whole algorithm.

LEMMA 5. There is an optimal solution y∗ of problem (4.1) such that y∗ � y1,
where y1 is the first stage solution of the algorithm (r = 1).

Proof. Let b1 = Ay1. Then we can assert that y1 is an optimal solution of the
problem


min cT y

s.t. Ay � b1,

0 � y � u.

(4.3)

In fact, y1 = y0 + θz = θz where z is an optimal solution of (4.2) for r = 0. For
any feasible solution y of (4.3), since

A

(
1

θ
y

)
� 1

θ
b1 = 1

θ
Ay1 = Az � 1,

258 J. ZHANG AND Y. LIN

1
θ
y is feasible for (4.2); thus cT (1

θ
y) � cT z and cT y � θcT z = cT y1. Hence y1 is

optimal for (4.3).
Let y∗ be an optimal solution of (4.1). If y1 � y∗, we have done; otherwise we

have
Claim: There is a vector ŷ ∈ Rm such that Aŷ = b1 and 0 � ŷ � y∗.
In fact, this ŷ can be constructed as follows. Assume that y1

1 > y∗
1 . As b1 � b,

each path Pi containing e1 must contain another edge ej with y1
j < y∗

j . So, we may
choose E1 as the set of edges ej satisfying:

(a) ej is contained in a path Pi containing e1;
(b) y1

j < y∗
j ;

(c) the distance from source s to ej is minimal.
Then each path containing e1 contains exactly one edge inE1. So, we can construct
a new vector ỹ by

ỹj =


y1
j − δ, if j = 1,
y1
j + δ, if ej ∈ E1,
y1
j , otherwise,

where

δ = min

{
y1

1 − y∗
1 , min

ej∈E1
(y∗
j − y1

j)

}
> 0.

It is clear that Aỹ = Ay1 = b1. If ỹ � y∗, the procedure is completed; otherwise
the same transformation is made for ỹ (instead of y1). In this way we eventually
get a vector ŷ satisfying the claim.

By viewing that ŷ is a feasible solution and y1 is an optimal one for (4.3), we
have cT ŷ � cT y1. Let y∗∗ = y∗ − ŷ + y1. Then

Ay∗∗ = Ay∗ − Aŷ + Ay1 � b − b1 + b1 = b,

cT y∗∗ = cT y∗ − cT ŷ + cT y1 � cT y∗.

Thus y∗∗ is also an optimal solution of (4.1) and y1 � y∗∗ � u. This completes the
proof. �

By this lemma, we can confine ourselves to finding the optimal solution y∗ of
(4.1) such that y1 � y∗. Hence we may first shorten edges according to y1. This is
exactly the same as stage 1 of our algorithm. In stage r of the algorithm, we may
update the vector b by b − br , where

bri =
{
aTi y

r , if i ∈ Br−1,
bi, otherwise,

and update the index set Br by deleting some i with bi = 0. Then, the procedure
of stage r is the same as that of stage 1. By using Lemma 5 again, it follows that
for any r there is an optimal solution y∗ of (4.1) such that yr � y∗.

To summarize, we obtain the following conclusion.

COMPUTATION OF THE REVERSE SHORTEST-PATH PROBLEM 259

THEOREM 4. The above combinatorial algorithm correctly solves the RSP in a
tree with single source in O(n2) time.

Proof. At each stage of the algorithm, due to the choice of step length θ , either
a variable yj attains its upper bound uj , or a path Pi reaches its required length.
So, the algorithm terminates (with br = b) in at most m+ k stages. By Lemma 5,
yr = y∗ is an optimal solution of problem (4.1). For the time bound, we have seen
that the number of stages is O(n). And in each stage, finding a minimum cut for
Br can be carried out in O(n) time, as mentioned before Lemma 5. Therefore, the
overall complexity is O(n2). This completes the proof. �

5. Concluding Remarks

The shortest-path problem is an elementary and well-studied model in combinat-
orial optimization and dynamic programming. Note that almost all shortest-path
algorithms so far are of dynamic programming type. In this paper we discuss a
reverse problem: adjusting the lengths of edges optimally so as to reduce travelling
times between some specified pairs of vertices to meet given upper bounds. This is
in fact a reverse dynamic programming problem: adjusting the parameters in each
stage with the least possible cost such that the efficiency of the multi-stage process
can be raised to an expected level. The study of these reverse problems is supported
by many practical applications.

We have shown that the general form of the problem is strongly NP-hard. So, it
is unlikely to get a polynomial-time algorithm for the general case. As usual, our
further studies are on polynomially solvable special cases, e.g., the case of trees
and the case of single source and single terminal.

It is interesting to compare the following cases:

(i) one source and several terminals;
(ii) single source and single terminal.

In the original shortest-path problem the algorithms for (i) are as easy as those
for (ii). As Lawler said in [11], “There seems to be no really good method for
finding the length of a shortest path from a specified origin to a specified destination
without, in effect, finding the lengths of shortest paths from the origin to all other
nodes”. However, in the reverse problem the case (i) is NP-hard whereas the case
(ii) is polynomially solvable. This shows that the reverse problem is quite different
in nature from the original one.

In the previous section we showed an O(n2) algorithm for the trees with single-
source and multiple-terminal. Symmetrically, the same conclusions holds for the
trees with multiple-source and single-terminal. As to the multiple-source and
multiple-terminal trees and one-way networks, Theorem 2.3 asserts their polyno-
mial (maybe not strongly polynomial) solvability. In addition, for some special
networks in which the shortened routes are internally disjoint, network N could

260 J. ZHANG AND Y. LIN

be decomposed into several subnetworks each of which has a single source and
a single terminal, and thus the related RSP problem has polynomial algorithms.
For example, the multi-path and some series-parellel graphs possess this special
structure.

By Theorem 2.3, a heuristic algorithm for general networks can be suggested
as follows. When all paths Pi from si to ti have been chosen and kept fixed, the
optimal shortening scheme can be determined by solving the linear program (2.2).
So, a path system {Pi} can be regarded as the search direction of the linearization
approximation, and the optimal solution of (2.2) is a locally optimal solution with
respect to this direction. This procedure of searching locally optimal solutions can
be carried out repeatedly by changing the path system {Pi} each time. At last we
can choose the best local solution.

Finally, the authors would like to thank the referees for their helpful comments
and suggestions.

Acknowledgement

The authors are grateful to the support of Hong Kong University Grant Council
under the grants CERG CityU 1081/99P and 1153/01P.

References

1. Bellman, R. (1958), On a routing problem, Quar. Appl. Math. 16, 87–90.
2. Berman, O., Ingco, D.I. and Odoni, A.R. (1992), Improving the location of minisum facilities

through network modification, Annals of Oper. Res. 40, 1–16.
3. Burton, D. and Toint, Ph.L. (1992), On an instance of the inverse shortest paths problem, Math.

Program. 53, 45–61.
4. Burton, D. and Toint, Ph.L. (1994), On the use of an inverse shortest paths algorithm for

recovering linearly correlated costs, Math. Program. 63, 1–22.
5. Burton, D., Pulleyblank, W.R. and Toint, Ph.L. (1997), The inverse shortest paths problem

with upper bounds on shortest paths costs, Lecture Notes in Econom. and Math. System 450,
156–171.

6. Cai, M., Yang, X. and Zhang, J. (1999), The complexity analysis of the inverse center location
problem, J. Global Optimization 15, 213–218.

7. Drangmeister, K.U., Krumke, S.O., Marathe, M.V., Noltemeier, H. and Ravi, S.S. (1998),
Modifying edges of a network to obtain short subgraphs, Theoretical Computer Science 203,
91–121.

8. Dreyfus, S.E. and Law, A.M. (1977), The Art and Theory of Dynamic Programming, Academic
Press, New York.

9. Fulkerson, D.R. and Harding, G.C. (1977), Maximizing the minimum source-sink path subject
to a budget constraint, Math. Program. 13, 116–118.

10. Garey, M.R. and Johnson, D.S. (1979), Computers and Intractability: A Guide to the theory of
NP-Completeness, Freeman, San Francisco, CA.

11. Lawler, E.L. (1976), Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and
Winston, New York.

12. Papadimitriou, C.H. and Steiglitz, K. (1982), Combinatorial Optimization: Algorithms and
Complexity, Prentice-Hall, Englewood Cliffs, NJ.

COMPUTATION OF THE REVERSE SHORTEST-PATH PROBLEM 261

13. Tarjan, R.E. (1985), Shortest path algorithms, Graph Theory with Applications to Algorithms
and Computer Science (Kalamazoo, Mich., 1984), Wiley, New York, 753–759.

14. Zhang, J., Ma, Z. and Yang, C. (1995), A column generation method for inverse shortest path
problem, ZOR Math. Methods of Oper. Res. 41, 347–358.

15. Zhang, J. and Ma, Z. (1996), A network flow method for solving some inverse combinatorial
optimization problems, Optimization 37, 59–72.

16. Zhang, J., Liu, Z. and Ma, Z. (2000), Some reverse location problem, European J. Oper. Res.
124, 77–88.

17. Zhang, J., Yang, X. and Cai, M. (1999), Reverse center location problem, Lecture Notes in
Computer Science 1741, 279–294.

